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Time-dependent quantum tunnelling via crossover processes 
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Department of Physics (Laboratory of Mechanics), University of Athens, Panepistimiopolis, 
GR 157 71-Zografos, Athens, Greece 

Received 31 May 1989 

Abstract. I t  is shown that the propagator K ( x t l x ’ 0 )  for a particle in a potential field is 
derivable from the classical path starting from x’  and reaching x at time 1. Considering a 
wavepacket as the particle initial state lying mainly on one side of a barrier the propagator 
is used for obtaining the wavefunction on the other side. Tunnelling is then discussed in 
terms of the evolving wavefunction. I t  is argued that while the particle’s expectation energy 
is taken to be lower than the barrier height the transformation by which the wavefunction 
is produced entails energetically crossover flights as required by the dynamics for the 
classical paths involved in the propagation process. The parabolic repeller exemplifies the 
formalism and exact results for the probability and current densities are given. A computa- 
tion involving ballistic tunnelling shows that the current density rises to a saturation value 
proportional to the particles’ injection rate. 

1. Introduction 

In the customary treatment of the phenomenon of quantum tunnelling one relies on 
obtaining an approximate solution of the Schrodinger equation relating to a potential 
barrier within the W K B  scheme for energies below the barrier height. Such a solution 
extends all over space and so the probability of finding the particle even in regions 
classically prohibited on account of insufficient energy does exist. 

Here we shall be taking a different point of view, outlined in the case of one- 
dimensional motion. We consider a particle in the field of a potential barrier in a state 
initially prepared in the form of a wavepacket 

Such a wavepacket locates the particle at the phase point ( x o , p o )  with minimum 
uncertainty irrespective of the variance u2. With appropriate choice of the variance 
the probability of finding the particle can be appreciable in a narrow region around 
xo. However, the particle’s energy expectation value may on certain occasions be 
dependent on u2, a situation that places a limit on the smallness of the variance if we 
wish the energy expectation value to be smaller than the barrier height. 

The state (1.1) establishes a certain initial probability distribution of finding the 
particle in a region around the point xo, which throughout this work will be assumed 
to be on the LHS of the barrier. Thus a portion, the most significant part of the 
probability distribution, lies mainly on the LHS of the barrier and, furthermore, the 
distribution may extend through a tail on the other side. Our approach to the tunnelling 
problem will rely on processes leading to transport of the above initial probability 
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from the L H S  to the R H S  of the barrier. Contrary to the situation expected from classical 
thinking there occurs a flow of probability from left to right even when the particle’s 
expectation energy is smaller than the barrier height, a state of affairs that characterises 
the tunnelling effect. 

When the potential energy associated with the barrier is independent of time the 
particle’s expected energy is a constant of the motion. This constant is taken against 
the evolving wavefunction yielding the transformed probability distribution producing 
the tunnelling effect. The linear transformation, as we shall show subsequently, can 
be constructed from a single classical path joining an initial spacetime point (x’,  0) 
with the spacetime point ( x ,  t )  labelling the wavefunction at position x and time t. 
This path, being classical, is associated with the right amount of energy as required 
by classical dynamics. Therefore, whenever in the process of transformation of the 
initial wavefunction in the course of time x’  and x happen to be on different sides of 
the barrier the transformation is effected through a crossover procedure, i.e. a procedure 
requiring the classical amount of energy to overcome the barrier in the specified time 
t .  The shorter the time of flight the higher the amount of energy required and definitely 
in excess of the barrier height. We summarise as follows. In the tunnelling effect, 
while the energy associated with the wavefunction is lower than the barrier height, the 
propagation of the wavefunction in time is effected through a set of appropriate flight 
processes for which the classical energy requirement is fulfilled. This picture of the 
tunnelling phenomenon constitutes one of the main results of the paper. 

Let us now proceed by putting things in a more concrete fashion. Beginning with 
an initial state described by the wavepacket (1.1) we can find the solution of the 
Schrodinger equation associated with the barrier potential energy by propagating the 
initial state. Thus, i f  K ( x t  I x’0) is the system’s propagator the required solution has 
the form 

p, xo,pii)(x, t )  = K ( x f  1 x’O)@, x , i , p o ) ( ~ ‘ )  dx’. (1.2) 5 
Once the evolving wavefunction (1.2) is known the probability of finding the particle 

in a region on the R H S  of the barrier as a function of time is known. Furthermore, 
the evolution of the current density at some point x on the R H S  of the barrier can be 
found through the usual formula as 

It is clear that the scheme outlined above is based on the propagator associated with 
the barrier problem. 

For the purpose of gaining insight into the tunnelling problem we proceed in section 
2 in a way that allows us to build our propagator by extending the semiclassical 
propagator. This also enables us to make contact with the W K B  procedure employed 
in the time independent approach, and furthermore we can draw certain comparisons 
particularly in relation to the use of the energy parameter appearing in both schemes. 
In  this section we further show that the exact quantum mechanical propagator 
K ( x t l x ’ 0 )  can be obtained from just a single classical path X , ( T ) ,  namely the path 
satisfying the end conditions X J O )  = x‘  and X, (  t )  = x.  This is a result of general validity 
revealing an  interesting aspect of quantum dynamical theory. 

Section 3 exploits the structure of the propagator in terms of the classical path 
X, (  T )  = X, (x t  1 x’0; T ) ,  satisfying the classical equation of motion and joining the 



Time-dependent quantum tunnelling via crossover processes 937 

spacetime points ( x ’ ,  0) and ( x ,  t ) ,  for obtaining a formula for the current density at 
a point x (observation point) at time t .  I t  is seen that the current density can be cast 
as a linear superposition of quantities involving the classical momentum Pc(xt  I x’0)  
and a corresponding purely quantal momentum P,(xt I x’0)  joining the point ( x ’ ,  0) as 
an initial spacetime point and a final one ( x ,  t )  with x the observation point and t the 
corresponding time. The superposition is taken against the initial wavefunction and 
the propagator over all initial points x’ .  In  the final analysis the current density evolves 
via a flight process described by the classical path X , ( x t  I x’0; T ) .  The energy associated 
with this path is in accordance with the classical dynamical requirements. Thus, when 
x’  and x are on different sides of the barrier the energy involved pertains to a crossover 
state of affairs. In contrast, the expectation energy value associated with the initial 
state can be smaller than the barrier height, which means that the current density at 
the observation point is of tunnelling origin. 

Furthermore, this section accommodates the notion of the transmission coefficient 
as a ratio of two probabilities B / A ,  A being the probability of finding the particle 
initially on the LHS of the barrier and B the net probability that it has migrated onto 
the other side after a very long time. 

Section 4 illustrates the preceding approach to the tunnelling problem using as a 
vehicle the parabolic repeller. This is an interesting situation in that there are no 
periodic bound states. Exact results are presented for the probability and current 
densities. The probability density is a drifting Gaussian about the classical path 
determined by the initial phase space point ( x , , p , )  entering the wavepacket (1.1). The 
current density involves two terms, one relating to the classical momentum P ( t )  
associated with the path that goes through the initial phase space point ( x , , ~ , )  and 
the Hamilton classical momentum Pc(xt  1 x ’ 0 )  associated with the path which joins the 
spacetime points ( x , ,  0) and ( x ,  t ) .  A not so common situation is shown to emerge 
when pot the initial particle momentum, points in the negative direction. In this case 
P ( t )  is negative since the particle is pushed away towards -CO, whereas Pc(xt  I x,O) is 
positive. There is then an interplay between P and P,, as a result of which we get 
initially a negative current at the observation point which after a while becomes positive. 
This is an interesting aspect in that, although the probability density centre recedes 
from the barrier, a current develops in the opposite direction on the other side of the 
barrier. 

Finally, our approach provides a natural frame for the handling of ballistic tunnel- 
ling. Ballistic tunnelling is treated in the case of the parabolic repeller and it is seen 
that the current density reaches a saturation value which is proportional to the entry 
frequency. 

2. The propagator 

It has been shown by Van Vleck [ l ]  that the semiclassical propagator for potential 
energy U ( x )  takes the form 

D ( x t ( x ’ 0 )  
K , ( x t  1 x ‘ o )  = ( . ) exp (i S,(x t  1 x ’ o ) )  2 m h  

where S,(xt I x ’ 0 )  is the classical action associated with the particle’s motion under the 
specification that at time t = 0 the particle is at x ‘  and goes through x at time t, and 
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D for the one-dimensional case is given by 

S,(xt 1 X’O). 
a‘ 

ax ax’ 
D ( x t  I x’O) = -- 

Furthermore, it has been shown by Pauli [2] that K ,  satisfies the essential initial 

K,(xt I X’O) + 6(x - x’) as t - 0  (2.3) 

required by the full quantal propagator K(xt lx’0) .  In addition Dirac [3] has shown, 
without using the form (2.2), that D satisfies the continuity equation. 

Before seeking a more accurate expression for the quantal propagator we wish to 
digress somewhat in order to draw certain comparisons with the customarily employed 
time-independent form of the W K B  approximation. 

condition 

We begin with the Hamilton-Jacobi equation 

--=-(-) as 1 as ’ + U ( x )  
a t  2m ax 

from which the classical action S, in (2.1) can be derived. 
It is well known that the expression 

S =  [.yx*jZm(E - U ( [ ) )  de-  Er 

(2.4) 

satisfies (2.4) for any value of the arbitrary constant E. In a way S in (2.5) is a general 
solution of (2.4). 

However, we are interested in the solution containing the necessary information 
about the classical path X,(.r)  depicting the particle’s motion specified by the end 
conditions X,(O) = x’ and X,( t )  = x. Under these circumstances E (the system’s energy) 
is of course a constant of the motion, but depends on the end conditions i.e. E = 
E (xt I x’0) and is determined by the additional equation 

aSIdE = o (2.6) 
which expresses the fact that the energy is fixed by the time t taken by our particle to 
move from x‘ to x in the field of force produced by the given potential. The expression 
for E = E(xt lx ’0)  determined through (2.6) when introduced into (2.5) leads to the 
required classical action SJxt I x’0) used in (2.1). 

In contrast, in the customary application of the W K B  approximation the energy, E, 
appears as if it were an arbitrary parameter. This leads to a situation in which the 
author experiences difficulty in obtaining a reconciliation between the complete 
arbitrariness of the energy constant of motion as employed in the time-independent 
W K B  approximation and the restriction on this constant deriving from its dependence 
on the end spacetime conditions in the semiclassical treatment of the propagator, 

Let us now improve on the propagator beyond the semiclassical stage. To this end 
we write the full quantal propagator in the form 

K (xt I x’0) = K,(xt I x’0) exp (2.7) 

On combining (2.1) with (2.7) the resulting exponential argument becomes S,+ Q 
and this is what might be called the quantal action, at least for reasons of communication 
in the text. Q is the purely quantal part of the action. 
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Upon introducing (2.7) into the Schrodinger equation 

the following equation for the motion of the purely quantal part of the action, Q, is 
obtained: 

-+->- aQ 1 as aQ 
a t  m ax ax 

Equation (2.9) governs the motion of the purely quantal part of the system's action. 
On account of the initial condition (2.3) satisfied by K ,  and the fact that the same 
initial condition is required of the complete quantal propagator, we are led from (2.7) 
that the constraint 

Q(xtlx'O)-,O as t + O  

is placed as the initial condition on Q. 
Let us now proceed to solve (2.9) as a 

power in h for which there is a non-zero 

Q =  f h"Qn. 
n = 2  

(2.10) 

power series in h. On inspection the lowest 
solution is 2. So we write 

(2.11) 

Introducing (2.11) into (2.9) and equating on both sides the terms of same power 
in h we obtain the following hierarchy of equations: 

(:+; $) Qn = F,,(xtlx'O) n = 2 , 3 , .  , (2.12) 

where the double argument function F,, is made out of the various aQ,/ax ( j  = 2, . . . , 
n - 1). 

The first few Fn are given below and a general formula becomes established for n > 4: 

F -- -->+- 1 aDaQ "'Q') -- 1 ("0')' - 
2m D ax ax ax2 2m ax 4 -  ( 

and for n 5 4 we have 

( 2 . 1 3 ~ )  

(2.136) 

(2.13 c )  

(2.13d) 

We now proceed to show that the hierarchy of equations (2.12) can be solved once 
the classical path X J 7 )  followed by the particle in the field of force dictated by the 
potential energy U ( x )  and satisfying the end conditions X,(O) = x '  and X,( t )  = x is 
available. For this path we make use of the notation 

(2.14) X,( 7) = X,( xt 1 x'0; 7 )  
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indicating the end conditions which it incorporates. In fact knowledge of the path 
(2.14) leads to the classical action S,  through the formula 

S,(xflx‘O)={‘ 0 ( ~ X : ( T ) -  U(X,(T))) d7 (2.15) 

and furthermore D is obtained via (2.2). D supplies F2 via (2.13~1) and from (2.12) 
Q2 is made known. This enables F3 to be obtained and therefore Q3 and so on. There 
remains to show how (2.14) forthe classical path leads to the required solutions of (2.12). 

For solving (2.12) we proceed to obtain the propagator of the corresponding 
homogeneous equation 

(2.16) 

Clearly the coefficient of aQ/ax in (2.16) is the classical velocity which the particle 
will have at time t in its motion through the potential field U, provided at time t = 0 
it is at x‘ and goes through x at time t. Utilising a revealing notation we write 

- + - L - = o  aQ 1 as a~ 
a t  m ax ax 

i a  
V,(xt I X’O) = - - S,(xt 1 X’O). m ax 

(2.17) 

We proceed to establish the relation 

a a 
-X,(XtIX’O; T ) = - v , ( X t I X ‘ O ) - X , ( X f I X ’ O ;  7) .  (2.18) 
a t  ax 

This is so, since the particle coordinate at time T determined by the path that passes 
through the spacetime points (x’0) and (x, t )  will not change by varying t and x on 
the original path. Thus, 

d a dx a 
dt  a t  d t  ax 
- x,( T )  = - x,( T )  +- - x,(T) = 0. 

On taking account of the fact that 

dx 
dt  
-= V,(xtIx’O) 

(2.19) 

(2.20) 

we establish (2.18). 
Let us now construct the conditional deterministic probability distribution of finding 

our particle at time T in the vicinity of 6 with the proviso that the spacetime particle 
trajectory passes through (x’, 0) and (x, t ) .  We have 

G(xt(x’0; [T )=~(X , (X~ IX ’O;  ~ ) - t ) .  (2.21) 

Introducing G from (2.21) into (2.16) in place of Q and taking account of (2.17) 
and (2.18) we find that (2.16) is satisfied. Furthermore, (2.21) fulfils the initial condition 

G(xt 1 x’O; &) -+ 8(x - 6) as T-+ t. (2.22) 

So, G is the propagator of (2.16) and incorporates the end conditions of our path. 

(2.12) as 
With the aid of (2.21) we can write the solution for the hierarchy of equations 

Q,(xt/x’O)= J, d r  J dtG(xtIx’0; [T)F,([TIX‘O) n = 2 , 3 . .  . . (2.23) 
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The Qn given by (2.23) not only satisfy the equations of the hierarchy, but also 

Utilising (2.21) we can write (2.23) as 
fulfil the right initial condition (2.10). 

Qn(xf 1 x’o) = d r  F,(X,(xt I x’o; T)T 1 x’o) n =2,3 .  . .  . . (2.24) 

The preceding evaluations show that the classical path X,(xrIx’O; T) is the only 
quantity needed for obtaining the quantal propagator. Thus, we reach the remarkable 
conclusion that the whole of quantum mechanics can be derived from just a single 
classical path, namely the one passing through two specified spacetime points. 

5,: 

3. Tunnelling as a superposition of crossover processes 

In the previous section we have shown how one can obtain the full quantal propagator 
K (xr I x’0) for a particle in a potential field U(x)  from a single classical path, namely 
the path X,(  T) = X,(xt I x’0; T )  joining the spacetime points (x‘, 0) and (x, t ) .  I t  should 
be noted that obtaining this path in an analytic form in general is not an easy task. 
However, in cases where the potential energy is such that does not allow the existence 
of a complete set (or possibly any at all) of periodic energy eigenfunctions the method 
utilising the above classical path for the propagator becomes particularly useful. The 
situation in tunnelling problems involves this sort of potential energy where extensive 
repulsive regions are present. 

We shall use as a vehicle for our presentation the case where the potential energy 
involves a repulsive hump and the initial state of our particle will be described by a 
wavepacket of the form (1.1) locating it at a point xo (expected position) on the LHS 

of the barrier. Furthermore, the expectation value of the particle’s energy will be 
smaller than the barrier height, so that classically the particle will be unable to find 
itself on the other side of the barrier on account of insufficient energy. The probability 
and current densities will be obtained at a point x on the RHS of the barrier. For the 
sake of communication we shall refer to the points xo and x as entry and observation 
position respectively. 

The probability density at the observation point x at time t corresponding to an 
entry at position x,, at t = 0 is obtained from the square modulus of (1.2) as 

where in (3.1) we have made use of (2.7) for the propagator. 
The essential feature in the tunnelling effect lies in that ‘part of the probability of 

finding the particle initially on the entry side of the barrier moves into the observation 
side. The ratio of the net amount of probability on the RHS of the barrier that has 
migrated into this region in time t over the initial probability of finding the particle 
on the entry side is given by 

= [[:I d x ,  0) dx1-l  [ d x ,  t ) -p(x,  013 dx (3.2) 
r,,, 

where x, is the coordinate of the barrier top. 
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The transmission coefficient in this frame is obtained from T ( t )  in the limit of 
t + CO, and the reflection coefficient by R = 1 - T, giving the ratio of the probability of 
finding the particle on the entry side after a long time (remainder of probability) over 
the corresponding initial probability. 

The definition made for the transmission coefficient through (3.2) embodies the 
essential feature of transmission for it gives the ‘portion of the particle that moved 
onto the other side of the barrier’ after a long time. However, it applies well only in 
the case where the potential maximum is located at a single point x,. The situation 
where the potential has a flat maximum requires modification. The fact that x, appears 
in the process of obtaining the transmission coefficient serves only for an implicit 
introduction of the barrier height U, = U(x,), a quantity appearing in this coefficient 
when one employs the usual asymptotic procedure for its evaluation. 

In section 2 we have seen that the propagator K ( x t  1 x’0) can be generated entirely 
from the classical path X c ( x t  I x‘0;  7).  This path represents a flight process from the 
point x‘ to the point x in time t and is consistent with the classical energy requirement. 
This means that the energy associated with the flight (a constant of motion) is greater 
than the particle’s maximum potential energy occurring between x’ and x. The shorter 
the flight time the larger the energy associated with the path. 

With the above in mind let us consider the case for which the initial state (1.1) 
locates the particle sufficiently far away from the coordinate of the barrier top in an 
adequately narrow region so that the wavefunction extends initially on the RHS of the 
barrier, at most, through an insignificant tail. Under these circumstances the probability 
of finding the particle on the entry side differs negligibly from unity. Having stated 
the situation for the initial state @ixo,po)( x )  the required information about the tunnelling 
process at the observation point x is obtained from the wavefunction \I l (xo,po)(x,  t )  via 
(1.2) as a superposition of the propagator K ( x t  I x’0) against the initial state @ixo,po~(x’) 
over all x’ ,  essentially lying on the entry side. Clearly, this superposition for the making 
of \Il(xo,po)(x, t )  utilises, through the processes involved in the propagator, all classical 
flights from x‘ to x in time t with x’ belonging to the region where the initial 
wavefunction is significant and which is located on the entry side. As has been pointed 
out earlier the energy required for each flight corresponds to a crossover process in 
contrast to a penetration state of affairs. 

In case the probability distribution extends with its tail on the R H S  of the barrier 
the above picture is not invalidated for the bulk of the initial wavefunction, but one 
has, in addition, to discuss an interference term coming from the propagation of the 
portions of the initial wavefunction lying on the LHS and the RHS of the barrier. 

Next, for the current density at the observation point we utilise (1.3). Combining 
(1.2), (2.1) and (1.3) we have 

+ P,(xtIx’O)+ Pq(xt  lx‘0) K ( x t  ~ x ’ O ) @ ~ x o , p o ~ ( x ’ )  dx‘ (3.3) ) 
where Pq is the purely quantum counterpart of the classical momentum P c ,  and is 
given by 

a Pq(xt  I X ’ O )  = - Q ( x t  1 X ’ O ) .  
ax (3.4) 
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In case the potential energy is a polynomial at most quadratic in x the first term 
in the square brackets on the R H S  of (3.3) is zero, and so is the purely quantum 
momentum Pq. In such a case the semiclassical propagator coincides with the exact 
quantal propagator, and the current density is obtained as a superposition of the 
classical momenta Pc(xt I x’0) over the initial positions x’ in the region where the initial 
wavepacket extends. 

In general Pq is non-zero as well as the derivatives of P, appearing in (3.3). In 
addition to the propagator the quantities Pq and P, and the latter’s derivatives are 
obtained from the classical path Xc(xt 1 x’0; 7 )  which, as stated earlier, is consistent 
with the energy required by the particle to overcome the barrier in its crossover flight 
from x’ to x in time t .  The decomposition of the probability and current densities, 
according to (3.1) and (3.3), in terms of crossover processes regarding the making of 
the propagator and the various momenta is the main result of this section. However, 
as pointed out earlier in the tunnelling effect, the initial wavepacket is associated with 
an expectation energy below the one required for a classical crossover process. 

The next section deals with a simple application of formulae (3.1) and (3.3) for 
which we can obtain exact results, and thus the foregoing discussion is elucidated 
through a concrete example. 

4. Tunnelling through the parabolic repeller 

A situation where the above formalism can be exemplified in an exact fashion is the 
parabolic repeller. The potential energy under consideration is given by 

U ( X )  = -$ma2x2.  (4.1) 
Although this is a relatively simple case it is instructive in that it presents itself as 

an instance where the system has no periodic energy eigenstates at all. Furthermore, 
one cannot consider, with ease, as an initial state a plane wave of considerable extension 
since it is difficult to prepare such a state in an increasingly repulsive field of force. 
In contrast, when a particle comes ovt of a source its state is essentially localised and 
a wavepacket in the form (1.1) can be well suited to describing the particle’s initial state. 

Employing Newton’s equation of motion for a particle with potential energy (4.1) 
we find that the path passing through the spacetime points (x’, 0) and (x, t )  is given by 

sinh R T  X,(xtlx’O; 7) = x ’ ( c o s h R ~ - c o t h R t  s i n h R ~ ) + x v .  
sinh R t 

Introducing X,(.r) = X,(xtIx’O; T )  from (4.2) in (2.15) we obtain the associated 
classical action as 

mR 
2 sinh R t  

S,( X t  1 X’O) = [ (x ‘+x’~)  cosh R ~ - ~ x x ’ ] .  

Furthermore, the double argument function D obtained from (2.2) is given by 

mR 
sinh Rr ‘ 

D( xt 1 X’O) = - 

(4.3) 

(4.4) 

Since D is independent of spatial coordinates the hierarchy of equations (2.12) together 
with the initial condition yield that the purely quantum action is in this case zero. 
Thus, the semiclassical propagator provides the exact propagator. 
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Upon application of (1.2) we find the wavefunction at the observation point x at 
time t as 

i imR 
( x  - x( r 1)’ + - poxo x e x p ( - 2 h  s inhfl t  h (4.5) 

where 

X (  t )  = xo cosh R t  sinh R t  (4.6) m 

sinh fl t. h r ( t )  = cosh R t  + i  ~ 

2mRu2 (4.7) 

X ( t )  in (4.6) is the position reached by the classical particle at time t if it started at 
xo with momentum p o .  In general X ( T ) ,  specified through the phase space point 
( x o , p o )  as initial condition defines a different classical path from the path X , ( T )  = 
Xc(xt /x ,O;  7) specified through the end conditions ( x o ,  0) and ( x ,  t ) .  For the latter 
path we have used the subscript c. In order that the paths X ( T )  and X , ( T )  coincide 
the initial momentum appearing in X ( T )  must be chosen in such a way so that X (  t )  = x 
is satisfied. 

Expression (4.5) for the evolution of the wavepacket (1.1) is in accord with the 
result obtained earlier [4] by an alternative method, and the probability density of 
finding the particle in the vicinity of the observation point x at time t is given by 

(4.8) 

where Ir(t)12 can be obtained from (4.7) as 

ir(t)i2 =cosh2 f l t  + (a)’ sinh’ at (4.9) 

where in (4.9) we have introduced 

A = ( h / 2 m n ) ” 2  (4.10) 

which is a characteristic length of the scattering processes associated with the potential 
energy (4.1). 

Utilising (1.3) or (3.3) in relation to (4.1) we obtain the current density at the 
observation points x at time t as 

1 
j ( x ,  t )  =- { P (  t )  + [ 1 + ( sinh’ R t  Pc(xt 1 xoO)}p(x, t )  

mlr(r)l’ 
(4.11) 

where P ( t )  is the particle’s classical momentum under the initial condtions X ( 0 )  = x o ,  
P ( 0 )  = po and is given by 

P’ ( t )=p ,coshf l t+mRx,s inhRr  (4.12) 

and 

mR 
sinh f l t  

Pc( X t  1 X O O )  = - ( x  cosh at - x o ) .  (4.13) 
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Comparison of (3 .3)  as applied to the parabolic repeller in which case only the 
Hamilton momentum P , ( x t / x ‘ O )  survives in the square brackets, with (4 .11)  for the 
tunnelling current tells us that the superposition of the momenta P,(xt  1 x ’ 0 )  over the 
region of x ’  where @ ( r o , p o ) ( ~ ’ )  extends leads to the appearance of the two classical 
momenta P ( t )  and P,(xtIx,O) as contributing factors to the current density. P ( t )  is 
the momentum which the particle has at its classical position as determined by the 
initial phase space conditions ( x , , ,  p o ) ,  whereas P,(xf  Ix,O) relates only to the starting 
point x,, and is the momentum the particle should have at the observation point x if 
it were to reach this point in time f .  When the particle’s initial conditions are ( x o ,  p o ) ,  
even for the classical motion the momentum P,(xf  1 x,O) is some sort of hypothetical 
momentum. 

As explained earlier, the momentum P,(xrIx,O) is consistent with the energy 
requirement for the particle to crossover the barrier in the specified time. This energy 
is given by 

m 1 
2 sinh’flt 

E ,  =- 0’- (x ’  + X :  - 2 ~ x 0  cosh f l t )  (4 .14)  

and is constant on the particle’s trajectory in spacetime from ( x , , ,  0) to ( x ,  t ) .  
What actually determines the tunnelling effect is the energy associated with the 

initial wavepacket, which has to be smaller than the barrier height, as it is determined 
by the position x, , .  Since the system is conservative the expectation value of the 
particle’s energy will remain constant in the course of time. In the present case the 
expected energy is given by 

1 
2 m  

( H )  = - p i  - i m f 1 2 x : + i m f 1 2 u 2  (4 .15)  

The first two terms on the RHS of ( 4 . 1 5 )  constitute the particle’s classical energy 
while the last term is an  energy produced by the repelling force deforming the 
wavepacket. This sort of deformation energy depends on the wavepacket’s spread 
expressed by u2. If the particle is highly localised (a2 very small) the deformation 
energy is very large and  if it is extended ( U ?  large) it becomes negative. When A = U 

the deformation energy is made equal to zero and  so the expected energy equals the 
classical energy. 

In order that the current produced at the observation point be of tunnelling origin 
we must have ( H ) < O ,  since the top of the barrier for the potential energy ( 4 . 1 )  is 
placed at zero. The potential energy at x,, being -( 1 / 2 m ) f l Z x i ,  the opposite of which 
constitutes the energy to be overcome. 

Let us now consider a situation in which ( H )  < 0 and furthermore p,, < 0, i.e. the 
particle’s classical motion on the RHS of the barrier drives it away from the position 
of the barrier’s top. Thus, P ( f )  is negative (see ( 4 . 1 2 ) )  while sinh‘ f l t P , ( x f / x o O )  starts 
from zero and  has a positive growth. Under these circumstances the tunnelling current 
at the observation point will be initially negative and, after a certain time, although 
the particle classically will be distancing itself from the top  of the barrier, a current 
density will appear at the observation point in the opposite direction. This degree of 
resolution between the movement of the expected motion of the particle and the 
building of current on the other side of the barrier has become possible through treating 
the tunnelling phenomenon in a time-dependent fashion. This situation is more clearly 
depicted in figure 1. 
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Figure 1. Evolution of probability and current densities for a particle entering the field of 
the parabolic repeller at xo = -2A.  The particle's expected energy equals the corresponding 
classical energy, in this case -7mf12A2/8. Curve ( a )  is probability density in units of 
IO3 A - '  and ( b )  is current density in units of 10-3R. Although the particle classically moves 
away from the barrier, after a while a tunnelling current in the opposite direction gets 
established. The probability density goes down initially and then rises. 

A further advantage of the time-dependent formalism lies in that it provides a 
frame for treating ballistic entry of particles against a barrier [ 5 ] .  Supposing a situation 
where particles make their entry, with insufficient energy, at times to,  t , ,  t , ,  . . . , then 
the kth particle generates a tunnelling currentjk(x, t )  at the observation point x. Under 
the above circumstances the total tunnelling current density, J, resulting from the 

Figure 2. Current density for ballistic tunnelling against a parabolic repeller. Entry of 
particles at xo = -2A at regular intervals with zero speed. Observation at x = 2A. The 
expected energy for each particle equals its classical value which is -2mR'A'. Curve ( a )  
is entry rate of 1 particle/n-'  and curve ( b )  is 2 particles/fl-'. The current density (units 
0 )  reaches a saturation value proportional to the entry rate. 
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stream of particles making their entry at xo, is given by 

J ( x ,  t ) =  c h ( x ,  t ) .  (4.16) 

Certain numerical results are presented in figure 2 and show that the ballistic current 
reaches a saturation value which is proportional to the frequency of the incoming 
particles. 

k = O  
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